Yaşam Ortamının Doğuşu

Önceki başlık Sonraki başlık Aşağa gitmek

Yaşam Ortamının Doğuşu

Mesaj tarafından cRn* & méLiss-á Bir Salı Kas. 11, 2008 5:11 pm

Dünya yaklaşık 4 milyar yıldır bir yaşam ortamıdır. Organik evrim, bir yaşam ortamının başlangıcından bu yana kadar oluşan değişiklikleri inceleyen bilimin adıdır. İnorganik evrim ise bundan önceki süreci de kapsayarak inceler. İnorganik evrimden bildiğimiz gibi, her an yapısını değiştirebilen bir evrede, yaşam ortamının da sabit kalması beklenemez. Sabit kalmayan bir yaşam alanındaysa, bütünü oluşturan parçaların değişmeden kaldığını savunmak doğanın mekaniğine aykırıdır. Bu nedenle 4 milyar yıldan beri hiç durmayan bir evrim söz konusudur.

Dört milyar yıl önceki koşullar, bir sürü basit molekülün yanı sıra büyük bir olasılıkla ilk olarak 16; daha sonra 20 amino asitle, sitozin (S), guanin (G), adenin (A) ve urasil (U) adı verilen bazların sentezlenmesini gerçekleştirmiş olabilir. İlkel atmosfer taklit edilerek gerçekleştirilen laboratuvar deneylerinin çoğunda, bu amino asitler ve bazlar, inorganik maddelerden kendiliğinden sentezlenerek elde edilebilmiştir. Koşulların değişimiyle ortaya çıkan ürünler de değiştiğinden, farklı birçok amino asitin sentezi aynı yolla gerçekleşmiştir. Aslında 20’den fazla amino asit sentezlenebilir. Ancak bugün sadece 20 amino asit ve 4 baz (kalıtsal materyalin şifrelenmesini sağlayan maddeler) bulunması, Dünya’nın o günkü koşullarının, sadece bu maddelerin bol miktarda sentezlenmesine elvermesindendir. Bir başka neden de, olasılıkla sentezlenmiş bulunan, ancak bugün canlıların kullanmadığı diğer amino asitlerin doğal seçilimle ayıklanmasıdır.

Bugünkü canlıların yapısını ana hatlarıyla oluşturan birçok koşul, ilkel yeryüzünün ilk zamanlarında etkindi. Bu faktörler sırasıyla fazla bir engele takılmadan yeryüzüne ulaşan Güneş ışınlarının bileşimi (özellikle morötesi ışığın yapısı), Dünya’nın çevresini saran manyetik koşullar (Van Allen kuşakları) ve atmosferin ilk zamanlarında var olmayan ozon tabakasının oluşması ve giderek etkisini artırmasıdır. 1,52 milyar yıl önce Güneş ışınlarının okyanusların yüzeyine vurarak, suyu elementlerine ayrıştırmasıyla (fotodisosiyasyon), serbest oksijen (O2) oluşmuştur. Serbest oksijenin belirli bir yükseklikte, yüksek enerjili Güneş ışınlarıyla bombardımanı sonucu ozon (O3) meydana gelmiş, canlıların yapısını oluşturan ve onları yıkıcı morötesi ışınların etkilerinden koruyan ozon tabakası da böylece devreye girmiştir. Bu dönemde hidrojen gazı, Dünya’nın kütlesinin yeterli olmaması nedeniyle, tutulamayarak uzaya kaçmıştır. Bugün de aynı süreç devam etmektedir. Bu nedenle atmosferdeki hidrojen oranı hep düşmektedir. Ozon tabakası ancak belli dalga boylarındaki morötesi ışınların yeryüzüne ulaşmasına izin verir. Bu ışınların belirli bir dalga boyunda bazı canlılarda, örneğin, D vitaminleri sentezlenir. Bugün canlıların sahip olduğu birçok özellik, günümüzden 4,5 milyar yıl önce oluşan ozon tabakasının seçici özelliğini yansıtır. 1,52 milyar yıl önceki ozon tabakasında, oksijen yalnız fotodisosiyasyon sonucu ortaya çıktığından, etkisi zayıftı (günümüzdekinin 1/1000′i). Dolayısıyla canlılık yine başka bir süzgeç olan okyanusların tabanında yaşamını sürdürmek zorundaydı. Su, tepkimelere zemin oluşturabilme ve ısıyı yüksek oranda tamponlayabilme özelliğinden dolayı, yaşam için önemli bir ortam oluşturur. Ozon tabakasının işlevinin görece zayıf olduğu bu dönemde, canlılar denizlerin altında yaşamlarını sürdürmüşlerdir. Bu canlıların yüzeye çıkmaları, kuvvetli morötesi ışınların üzerlerinde yıkıcı etki yapmasından ötürü olanaksızdı.

Fotosentetik bakterilerin orta ya çıkışıyla, atmosferdeki oksijen salt fotodisosiyasyon yoluyla değil, fotosentez yoluyla da oluşmaya başladı. O dönemden bu yana, dünyadaki oksijen miktarı bugünkü %21′lik orana yaklaştı. Ozon tabakasının güçlenmesiyle, yıkıcı morötesi ışınları önemli ölçüde engellendi. Ancak bu aşamadan sonra, canlılar yavaş yavaş, önce suyun yüzeyine, daha sonra da karaya çıkma şansını elde ettiler.

Polimerlerin en büyük düşmanı serbest oksijendir; oksijen onları oksitleyerek parçalar. Bu nedenle, Dünya’nın başlangıcında oksijen ortaya çıksaydı yaşamı önleyecekti. Dünya’nın ilk zamanlarında serbest oksijen olmaması nedeniyle polimerler oksitlenmeden uzun süre varlıklarını koruma şansına kavuşmuşlardı. Bugün canlılığın tekrar oluşmamasının temel nedeni, serbest oksijenin polimerleri anında oksitlemesindendir.

İlkel atmosfer koşullarında oluşan birçok molekül arasında S, G, A, U bazları da yer alıyordu. Bunların birbirlerine bağlanma özellikleri vardır. Bu, değişik fiziksel koşullarla olabildiği gibi, yüzey tepkimelerine uygunluk gösteren kil partikülleri aracılığıyla da olabilir. S, G, A, U bazları bir araya geldiklerinde, zincir halindeki RNA’yı (ribonükleik asit) oluştururlar. Bu zincirler başlangıçta yaklaşık 10-15 baz uzunluğundadır. Dolayısıyla büyük bir olasılıkla, yaşam RNA ile başlamıştır. Daha sonraki bir aşama da urasil, dönüşme ya da eklenme yoluyla yerini timine (T) bırakmıştır. Bu noktadan sonra daha kararlı bir molekül olan DNA ortaya çıkmış ve hayranlık verici serüvenine başlamıştır.

Başlangıçtaki canlılar daha önce inorganik yoldan oluşmuş olan molekülleri kullanarak yaşamlarını sürdürüyorlardı. Ancak zaman içerisinde biriken tüm molekülleri ortadan kaldırdılar. Bunların içinden bir ya da birkaçı dünyada en çok bulunan maddeden sudan hidrojen elde etme yolunu geliştirince, hem kendisini hem de diğer hayvansal canlıları kurtarmış oldu.

Fotosentez Mekanizması
RNA ve DNA zincirlerlerini taşıyan moleküller büyük bir olasılıkla, zamanla, yanardağ işlevleri ya da derin denizlerin altındaki tektonik işlevlerle, amino asitlerin yüksek sıcaklıklarda kaynatılması ile oluşan, bugünkü hücre zarına benzeyen polimerlerin içerisine girmiş olmalıdır. Bu ilkel hücre zarı yapısının, zaman içerisinde çeşitli elementlerin, moleküllerin katılımıyla daha organize bir hücre zarına dönüştüğü varsayılır.

Sözkonusu ilkel hücre zarı yapısını bugün laboratuvar ortamında taklit etmek mümkündür.

Bakteri benzeri ilk yapılar o dönemde inorganik yollarla sentezlenen glukozu (başka basit şekerleri de) ve ATP’yi (adenintrifosfat) enerji kaynağı olarak kullanmaya başladılar.

İlkin hücreler çevrede daha önce yığılmış bulunan glukozu tüketince, belki de Dünya’da ilk besin krizi ortaya çıkmış, o günkü canlıların büyük bir kısmı ortadan kalkmıştır. İlkin hücrelerden bir ya da birkaç tanesi, daha küçük moleküllerden glukozu sentezleyen bir enzime sahip olunca, ayakta kalmayı başarabildi. Daha önce inorganik yoldan sentezlenmiş bu alt yapılar ilk etapta glukoza sentezlendi, daha sonra da hücre tarafından enerji kaynağı olarak kullanıldı. Sentez mekanizması bir kez elde edilince, heterotrof canlıların da ayakta kalması mümkün oldu. Bir süre sonra bu stok da tüketildi.

Bunun üzerine daha da küçük yapılardan önce altyapılar, daha sonra da glukoz sentezlendi. Sonuçta ortamda basit de olsa, önceden inorganik yollarla sentezlenmiş herhangi bir molekül kalmadı.

Hücre zarının üzerine yanardağ faaliyeti (ya da uzay) kökenli porfirin dediğimiz (hemoglobin ya da oksijen tutan diğer moleküllere yakın yapılar) madde eklenince, daha önce doğrudan Güneş ışınları ile okyanus üzerinde gerçekleşen fotodisosiyasyon, artık ilkin hücrenin yüzeyinde gerçekleşmeye başladı. Su molekülleri hücre zarlarında parçalandığında ortaya çıkan hidrojen, glukozun yapımı için kullanıldı, oksijen de atık madde olarak ortama verildi. Böylece fotosentez mekanizması bulunmuş oldu. Bu aşamada yeryüzündeki canlılık heterotrofik bakteri benzeri formlar ve fotosentetik bakteriler şeklindeydi. Fotosentez nedeniyle Dünya’daki oksijen miktarı yükselince, ozon tabakası güçlendi. Morötesi ışınların etkilerinin azalmasıyla, denizlerin dibinde bulunan canlılık su yüzeyine çıkmaya başladı. Ancak bu durumun bir olumsuz etkisi oldu: Oksijen miktarı yükseldikçe canlılar oksijenin yıkıcı etkisinden dolayı yok olmaya başladılar. Belki tek bir canlı ya da Dünya’daki birkaç bakteri benzeri canlı, edindiği birkaç enzim ile, oksijeni aşamalı oksitleme işlemi için kullanmaya başlayınca, bazı bakteriler bugünkü canlıların hücrelerinde bulunan ve hücrenin enerji çevrimini sağlayan mitokondrilerin atasına dönüştü. Bu aşamaya kadar Dünya’daki tüm biyolojik işlemler, oksijensiz solunumla gerçekleşmiştir. Mitokondri bulununca ilk defa glukoz başına ortaya çıkan enerji miktarında patlama yaşandı (36-38 ATP). Canlılık birden bire bu merdivenlerde önemli bir sıçrama gerçekleştirdi. Heterotrof canlıların bir kısmı, mitokondri özelliği kazanmış bu bakterileri ve bunun yanı sıra fotosentez yetenekli başka bakterileri bir çeşit fagositozla hücre içine aldı. Her ikisini birden alanlar bitki hücresine, sadece mitokondri özelliği kazanmış bakterileri alanlar hayvan hücresine dönüştü.

İlkel hücreler, hayvan ve bitki hücreleri niteliği kazanana dek, DNA tek zincirli çember formdaydı. Ancak daha fazla kalıtsal bilgi zincire eklenince DNA kendini eşleyemeyecek uzunluğa ulaştı. Bir rastlandı sonucu TTGGGG (memelilerde TTAGGG) baz dizilimleri bu kromozomların içerisine girince, o güne kadar çember biçimindeki kromozomların ucunda telomer adı verilen bölümler oluştu. Bu dizilimler, kromozomların uçlarının birbirlerine yapışmasını önleyerek, bir çeşit bağımsız kimlik kazanmalarını sağladı. Böylece çember DNA, bugünkü çubuk ya da V şeklindeki kromozomlara dönüştü.

Yine bu aşamada DNA tek (haploid) değil, iki zincir (diploid) halinde bulunmaya başladı. Telomerlerin DNA zincirinin başını ve sonunu ayırması dışında en önemli özellikleri, canlının ömrünü belirlemesidir. Telomerin belli bir parçasının kendini yineleyememesinden dolayı, hücre bölünmesi sırasında kopup kaybolması, canlılar için önemli bir sorun oluşturdu. Bu şekilde, kaçınılmaz ölüm canlıların dünyasına girdi.

Daha sonra gerçekleşen bir sürü olayla hücre içerisine yeni bir kesecik girebilir ya da hücre içindeki bir organizasyonla yeni bir kesecik oluşarak, kromozomlar bu keseciğin içine girebilir. Böylece çekirdekli canlılar (ökaryotlar) oluşur.

Canlıların tür olarak yaşam süreleri uzun olursa, oluşturacakları rekombinasyon ve çeşitlenme şansı o kadar azalır. Bu, evrimsel olarak canlının uyum yeteneğinin azalması anlamına gelir. İşte bu nedenle kısa yaşayan türler, evrimsel olarak daha başarılı türleri meydana getirirler. Aynı mekanizmaya sahip olmalarına karşın, kartalların 100, tavukların 6 sene yaşamaları, tavukgilleri dünyada baskın, kartalları soyu tükenecek duruma getirmiştir. Bu nedenlerden dolayı bakteriler uyum yetenekleri en yüksek canlılardır. Kısa yaşayıp çok döl veren canlı evrimsel olarak en başarılıdır.

cRn* & méLiss-á
Admin

Mesaj Sayısı : 142
Kayıt tarihi : 10/11/08

Kullanıcı profilini gör http://evrimteorisi.allgoo.net

Sayfa başına dön Aşağa gitmek

Önceki başlık Sonraki başlık Sayfa başına dön


 
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz